

Can parasitism by *Tamarixia radiata* (Hymenoptera: Eulophidae) affect the movement and oviposition behavior of *Diaphorina citri* (Hemiptera: Psyllidae)?

Juliana S. Oliveira · Carolina Reigada · Alexandre J.F. Diniz ·
Idemauro A.R. Lara · Rafael A. Moral · José R.P. Parra

Received: 29 July 2022 / Revised: 17 November 2022 / Accepted: 14 December 2022 / Published online: 29 December 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract *Diaphorina citri* is the vector of the bacterium that cause “huanglongbing” (HLB). The psyllid acquires the pathogen after feeding on infected plants and transmits it to other trees as it moves through the orchard. The psyllid’s movement is directly affected by abiotic and biotic factors, such as the presence of conspecific insects and natural enemies. We evaluated the effects of the presence of conspecific nymphs either not parasitized or parasitized by *Tamarixia radiata* on the movement and oviposition of adult female *D. citri*. *Diaphorina citri* females were released into cages containing a row of four equidistant *Murraya paniculata* plants. The first plant, the release point, had one of three conditions:

no nymphs; non-parasitized nymphs (high and low densities); or previously parasitized nymphs. At 24, 48, and 72 h following release, the females on each plant in the cage were counted. At the end of the observations (72 h), the females were removed, and the eggs laid on the plants were counted. The presence of non-parasitized nymphs, at low and high densities, increased the tendency of adult movement and reduced the total number of laid eggs, compared with cases in which nymphs were absent. On the other hand, the presence of nymphs increased the egg distribution by females over all available plants in the cages. In these cases, higher number of adult females and eggs were observed in plants without nymphs, compared with the plant in which nymphs were present (release point). The conditions of nymphs, i.e., if parasitized or not, did not change the movement behavior and the distribution of eggs deposited over plants in the cages. However, the number of eggs laid by females was low for the cases in which the nymphs were parasitized. The findings can contribute to establishing the optimal of application of the psyllid management techniques, and improving the efficiency of natural enemy releases considering that the pest can be present at the field in different life stages.

J. S. Oliveira · A. J. Diniz · J. R. Parra
Department of Entomology and Acarology, “Luiz de Queiroz” College of Agriculture, University of São Paulo (USP), Piracicaba, São Paulo, Brazil
e-mail: julianabioso@gmail.com

C. Reigada
Department of Ecology and Evolutionary Biology, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil

I. A. Lara
Department of Exact Sciences, “Luiz de Queiroz” College of Agriculture, University of São Paulo (USP), Piracicaba, São Paulo, Brazil

R. A. Moral
Department of Mathematics and Statistics, Maynooth University, Maynooth, Ireland

Keywords Aggregation · Intraspecific competition · Choice of oviposition and feeding site · Displacement · Asian citrus psyllid

Introduction

Biotic and abiotic factors directly affect the ability of living beings to move, as they are decisive in determining the ability of species to disperse and survive (Dingle 1972; Stinner et al. 1983; Minter et al. 2018; Naranjo 2019). In this context, the movement of insect pests defines their spatial temporal abundance and distribution, and consequently the severity of the damage they cause to the attacked crops, as well the ecological and evolutionary impact on population regulation, community dynamics and gene flow (Mazzi and Dorn 2012). Understanding the effects of biotic and abiotic factors on the behavior of insects during their movement and search for oviposition and feeding sites can contribute to management programs for insect agricultural pests, such as the development of pest occurrence and prediction models or models that direct the best moment of application of the management tactics (Bullock et al. 2002; Mazzi and Dorn 2012; Garcia et al. 2019, 2021).

The Asian citrus psyllid *Diaphorina citri* transmits the bacterium that causes “huanglongbing” (HLB) is native to Asia. Due to its dispersal capacity, which increases from the immature to the adult stage (Sétamou et al. 2020), this species is now present on most continents (Halbert 1998; French et al. 2001; Bové 2006; Shimwela et al. 2016; Oke et al. 2020). Consider rewording...transport between continents is presumably human-aided

Although *D. citri* adults tend to remain in the same grove after their arrival, they continually move over short or long distances within the orchard (Boina et al. 2009; Kobori et al. 2011; Lewis-Rosenblum et al. 2015; Tomaseto et al. 2016, 2019). During these movements, adults and nymphs can acquire the bacterium (HLB) by feeding on an infected plant for 30 minutes or more (Capoor et al. 1974; Hung et al. 2004; Pelz-Stelinski et al. 2010). The adult becomes a HLB transmitter 3 days after feeding (Xu et al. 1988) and the nymphs transmit HLB after they become adults (Inoue et al. 2009; Pelz-Stelinski et al. 2010). Infected trees become unviable after 4–5 years, and their fruits drop before ripening and have lower sugar content (Grafton-Cardwell et al. 2013; Dala-Paula et al. 2019).

Considered the most destructive citrus disease, in 2014 HLB reduced orange production in Florida by approximately 43% (Singerman and Useche 2016) and has decimated more than 50 million trees in Brazil (CDA 2019). The disease significantly

reduces citrus production in Africa (Garnier and Bové 1996; FAO 2002), Asia (Martinez and Wallace 1968; Bhavakul et al. 1982; Bové 1986; Sharma 2008; Shivankar et al. 2000), and Oceania (Fraser 1978). Infection reduction is achieved by eliminating infected plants, using healthy seedlings for planting, and managing the vector insect through application of chemical products and/or release of natural enemies, mainly *Tamarixia radiata* (Hymenoptera: Encyrtidae), an ectoparasitoid that attacks the psyllid nymphs (Diniz et al. 2020; Garcia et al. 2021).

The movement of psyllids in grove is influenced by the presence and density of shoots available on the host, temperature, relative humidity, and wind (Yamamoto et al. 2001; Lewis-Rosenblum et al. 2015; Tomaseto et al. 2017; Garcia et al. 2019; Antolinez et al. 2021). In addition to these factors, the frequency and pattern of movement of *D. citri* adults in the search for host plants and the selection of microhabitats can also be influenced by competitive interactions with conspecifics and by encounters with natural enemies (Fritz 1982; Nufio and Papaj 2001). Natural control agents can, in addition to directly reducing populations, indirectly affect the behavior, physiology, morphology, and development of their preyhosts. This indirect effect or non-consumptive effect was shown in studies with parasites (Holmes and Bethel 1972; Price 1980) and predators that found reductions in the population growth of aphids, *Acyrthosiphon pisum* (Homoptera: Aphididae) by damsel bugs (Hemiptera: Nabidae) (Nelson et al. 2004), *Leptinotarsa decemlineata* (Coleoptera: Chrysomelidae) by *Podisus maculiventris* (Heteroptera: Pentatomidae) (Hermann and Thaler 2014), and *Diaphorina citri* by *Hippodamia convergens* (Coleoptera: Coccinellidae) (Seo et al. 2018).

Since most of the *D. citri* primary inoculum sites are external to commercial orchards (Tiwari et al. 2010), knowledge of parameters that will stimulate the start of psyllid migration from these sites as well as of the effects of intraspecific competition (i.e., density of conspecifics) and the presence of natural enemies on the pattern of movement and oviposition of *D. citri* adults can contribute to the improvement of techniques used in integrated management (IPM) of this insect pest, for example, to define pest sampling techniques, as well the distribution of release points for natural enemy releases in the field. This study evaluated the movement of psyllid females and the

pattern of egg distribution in experimental cages containing host plants in different situations: (i) healthy plants (*i.e.*, without psyllid nymphs), (ii) plants with *D. citri* nymphs, and (iii) plants with *D. citri* nymphs parasitized by *T. radiata*.

Materials and methods

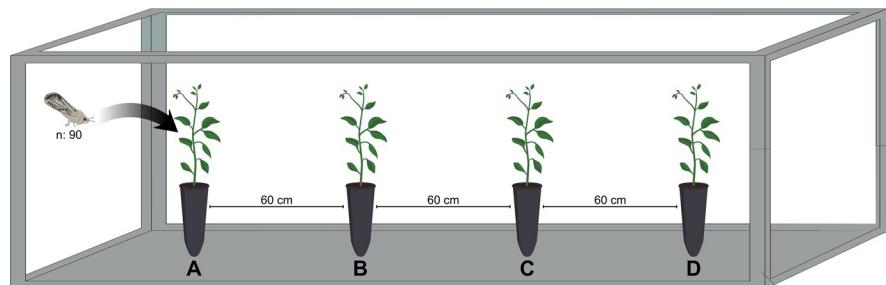
Colony of insects and host plants

For this study, nymphs and adults (females) of *D. citri* and adults of *T. radiata* were obtained from the rearing colonies at the Laboratory of Insect Biology of the University of São Paulo –ESALQ/USP, Piracicaba, maintained following the method of Parra et al. (2016). The host plants used were orange jessamine, *Murraya paniculata* (L.) Jack, kept in a greenhouse under natural conditions and with automatic ventilation that maintains the temperature between 25 and 28 °C.

Experimental design

To evaluate the effects of the presence of conspecifics and the presence of parasitized nymphs on the movement and oviposition pattern of *D. citri* during the search for available plants for food and development of its offspring, a group of 90 adult psyllid females, 9-days old (average period of onset of oviposition) (Nava et al. 2007), was used. Prior to the beginning of the experiment, females were kept for 9 days in cages containing males, to ensure mating. After this period, the 90 females were selected randomly from the cages and then transferred to fabric tunnel cages (200 × 60 × 70 cm), each containing 4 tubes (250 ml) with 4 orange jessamine shoots per tube and spaced equidistantly from

each other (Fig. 1). The shoots had an average length of 1 cm, as this is the most attractive size for oviposition (Diniz 2013). After the insects were released, the number of females on each plant (A, B, C, and D) was counted to assess the movement of insects on the available plants over 24, 48, and 72 h. At the end of 72 h, the total number of eggs laid on each plant was also counted. The cages were kept in the greenhouse under the same conditions described above.


In the first set of experiments, the effect of intraspecific competition on the movement and distribution of *D. citri* eggs was evaluated. Inside the experimental cages, 4th and 5th instar psyllid nymphs were placed on the first plant (plant A, release site). Two nymph densities (*i.e.*, treatments) were established: (i) low density, with 15 nymphs present; and (ii) high density, with 70 nymphs present. A control consisted of plants with no nymphs. Ten replicates were performed for each treatment and control.

In the second set of experiments, the effect of the presence of parasitized nymphs on the movement behavior of *D. citri* and its eggs distribution was evaluated, using two treatments: (i) presence of 25 non-parasitized *D. citri* nymphs on plant A and (ii) presence of 25 nymphs previously parasitized by *T. radiata* on plant A. Ten replicates were performed for each treatment. Treatment without the nymphs was done in the first experiment. The parasitized nymphs were easily recognized by the mummified aspect, by the presence of meconium and wax around the body (Fig. 4).

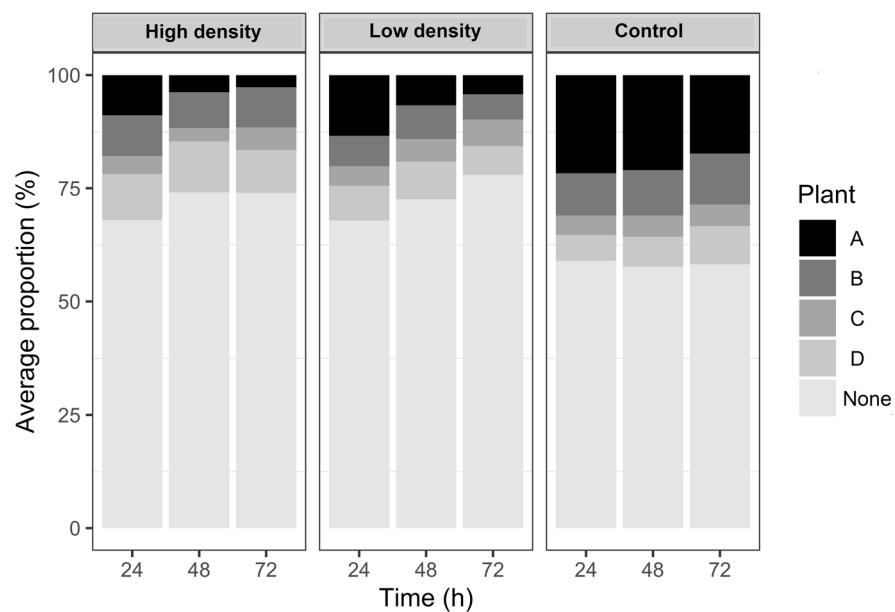
Data analyses

For the analysis of the movement of insects between plants over time (24, 48, and 72 h) an extension of the discrete-time transition models for clustered nominal data was used, according to the procedure proposed by Lara et al. (2020). In this procedure, a multinomial

Fig. 1 Experimental cage to evaluate the movement and distribution pattern of *Diaphorina citri* eggs on *Murraya paniculata* plants

distribution was assumed for the response variable, with five categories: Plant A, Plant B, Plant C, Plant D, and none (insects that were in the cage but not on one of the plants), each representing the preference of insect groups, and the generalized logit models were fitted (Agresti 2013). The first-order Markov stochastic assumption was used to fit the model, i.e., the number of insects on each of the plants was incorporated into the linear predictor of the model as additional covariates. To decide between a stationary process or not, the likelihood ratio test proposed by Lara et al. (2017) was used. If the stationary model is assumed, in practice, insects move through the vases, following a homogeneous pattern over time.

For the analysis of the variation of the total number of eggs deposited on the four plants (A, B, C, and D) after 72 h, considering the possible effect of treatments (experiment 1: high nymph densities, low nymph density, and absence of nymphs; experiment 2: parasitized nymphs and non-parasitized nymphs), the Generalized Linear Model was fitted assuming a Poisson distribution, considering the Quasi-Poisson model when over dispersion is found, which is a common phenomenon with count data with a variance much greater than the mean (McCullagh and Nelder 1989). The best statistical model was chosen through comparisons between the adjustments of the complete models and models with the reduction of explanatory variables by the Akaike criterion (AIC). The


quality of the adjustments obtained by the models was assessed using the “half-normal-plot” graph with simulated envelopes at the 95% level (Moral et al. 2017). All analyses were performed using the R software (R Core Team 2019).

Results

Experiment 1: Movement rate of females and egg distribution pattern of *Diaphorina citri* in the presence of non-parasitized nymphs

Time variation (24, 48, and 72 h), covariates for psyllid occupation options (plants A, B, C, D, and none), and the presence of nymphs (low or high density) significantly affected the movement of the adult females of *D. citri* ($LRV = 55.34$, $df = 28$, $p < 0.01$; $LRV = 746.67$, $df = 16$, $p < 0.01$; and $LRV = 13640.51$, $df = 8$, $p < 0.01$, respectively). The results showed that in the control group, in which nymphs were absent, the average proportion of insects remained higher on plant A (insect release point) during the three evaluation periods (24, 48, and 72 h) compared to the proportion of insects that remained on plant A when nymphs were present (Fig. 2, Table 1). At low and high nymph densities with the passage of time, females tended to move toward the other plants in the cages (Table 1). The proportion of psyllids elsewhere than on the plants was

Fig. 2 Mean percentages of adult females of *Diaphorina citri* on *Murraya paniculata* plants in the absence and presence of nymphs in low and high densities over 24, 48, and 72 h

Table 1 Numbers (mean \pm standard error) of insects found on the four plants (A, B, C, D) after release of *Diaphorina citri* on plant A (with the presence or absence of nymphs in low or high density), over 3 days

Treatment	Period (h)	Mean no. of insects			
		Plant A	Plant B	Plant C	Plant D
Absence of nymphs (Control)	24	19.5 \pm (2.5) Aa	8.4 \pm (1.9) Aab	3.9 \pm (1.2) Ab	5.1 \pm (1.1) Ab
	48	18.9 \pm (2.3) Aa	9.0 \pm (2.3) Aab	4.2 \pm (0.9) Ab	6.0 \pm (1.3) Ab
	72	15.6 \pm (2.3) Aa	10.1 \pm (2.1) Aab	4.3 \pm (1.1) Ab	7.6 \pm (1.7) Ab
Low nymph density	24	12.1 \pm (2.8) Aa	6.0 \pm (1.1) Aab	3.9 \pm (1.1) Ab	6.9 \pm (2.0) Aab
	48	6.0 \pm (2.1) ABa	6.7 \pm (0.9) Aa	4.5 \pm (1.3) Aa	7.5 \pm (2.1) Aa
	72	3.8 \pm (1.6) Ba	5.0 \pm (1.1) Aa	5.3 \pm (1.5) Aa	5.7 \pm (1.9) Aa
High nymph density	24	8.0 \pm (1.6) Aa	8.1 \pm (1.8) Aa	3.6 \pm (0.6) Ab	9.1 \pm (1.6) Aa
	48	3.4 \pm (0.9) Bb	7.1 \pm (2.0) Aab	2.7 \pm (0.5) Ab	10.1 \pm (2.0) Aa
	72	2.4 \pm (1.1) Bb	8.0 \pm (2.1) Aa	4.5 \pm (0.7) Aab	8.5 \pm (2.1) Aa

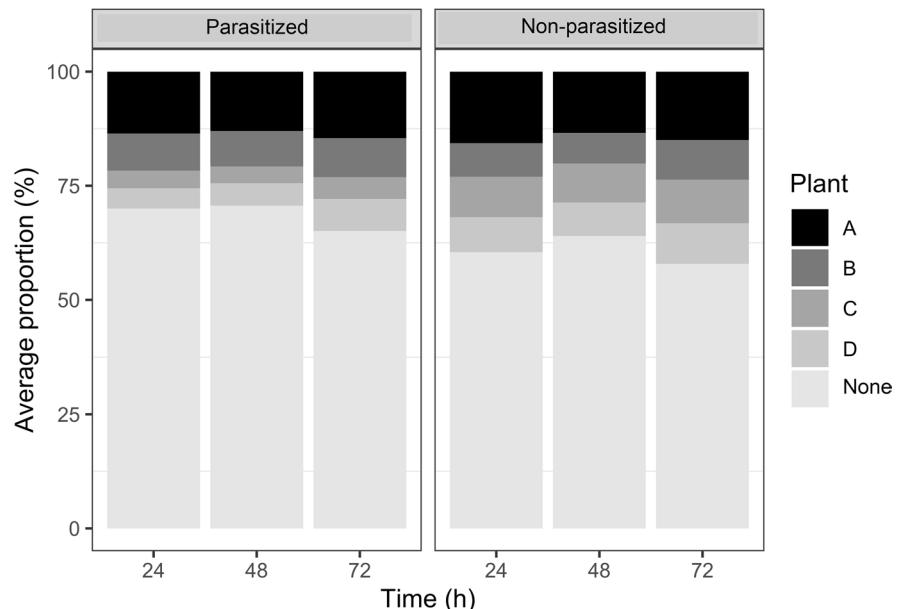
Means followed by different letters indicate a significant difference at significance level $\alpha = 5\%$ (likelihood ratio test). Uppercase letter compares the times inside plants for each treatment (rows), lowercase letter compares the plants at each time for each treatment (column)

also higher and increased with time when nymphs were present, indicating a greater tendency to move compared to the control group (Fig. 2).

The presence of nymphs (low or high density) and the distance of the plants from the release point (plant A) significantly affected the distribution of eggs on the different plants ($F_{6,108} = 3.83, p < 0.01$). In the control group, the highest number of eggs was found on plant A. In plants B, C, and D, fewer eggs were laid and the numbers of eggs deposited on these plants did not differ significantly (Table 2). The presence of nymphs at the release point (plant A) resulted in changes in the distribution of eggs by females. When the density of nymphs on plant A was low, the distribution of eggs was more uniform among the plants in the cage, with no significant difference among plants. However, when the density of nymphs on plant A was high, more eggs were observed on plants D and B, in that order, 72 h after the females were released into the cages (Table 2).

Experiment 2: Movement rate of females and pattern of egg distribution of *Diaphorina citri* in the presence of non-parasitized nymphs and nymphs parasitized by *Tamarixia radiata*

The variation in time (24, 48, and 72 h), the covariates for occupation options by the psyllid (plants A, B, C, D, and none), and the presence of nymphs (parasitized or not parasitized) significantly affected the


movement on the plants by adult females of *D. citri* ($LRV = 60.44, df = 24, p < 0.01$; $LRV = 405.92, df = 16, p < 0.01$, and $LRV = 3258.7, df = 4, p < 0.01$, respectively). The results showed that number of adult psyllids on each plant in the cage did not differ over the observation period (24, 48 and 72 h) (Fig. 3 and Table 3). However, comparing the proportion of psyllids among the plants on each period of time, when parasitized nymphs were present, the adult psyllids showed the tendency to remain in plant A. On the other hand, when nymphs were not parasitized, the insects tendend to move toward the other plants in the cages (Fig. 3, Table 3).

Regarding the distribution of eggs on the four plants, there was no effect of plant and parasitism interaction ($F_{3,72} = 0.3017, p = 0.8241$). The plant effect was also not significant ($F_{3,75} = 0.0349, p = 0.9912$). However, the presence of non-parasitized or parasitized nymphs had a non-significant but marginal effect ($F_{1,78} = 3.74, p = 0.0571$) on the distribution of eggs on the four plants. The mean number of eggs was high in cages in which nymphs were not parasitized (Table 4A). There was no significant difference between the number of eggs deposited among plants (Table 4B). When the present nymphs on plant A were parasitized, females laid their eggs under nymphs (Fig. 4), differing from the other cases, in which the eggs were laid on the plant shoots.

Table 2 Numbers (mean \pm SD) of eggs of *Diaphorina citri* found on the four plants (A, B, C, D), in the presence (low or high density) or absence of nymphs on plant A (insect release point) 72 h after adults were released

Treatment	Mean no. of eggs				Total
	Plant A	Plant B	Plant C	Plant D	
Absence of nymphs (Control)	205.7 (\pm 63.6) Aa	74.7 (\pm 22.7) Ba	42.1 (\pm 13.7) Ba	58.2 (\pm 31.3) Ba	3807 A
Low density of nymphs	26.6 (\pm 10.3) Ab	49.6 (\pm 16.4) Aa	27.4 (\pm 10.9) Aa	39.8 (\pm 20.5) Aa	1434 B
High density of nymphs	8.9 (\pm 3.9) Ab	87.0 (\pm 41.7) Ba	27.1 (\pm 12.4) Aa	93.9 (\pm 30.8) Ba	2169 B
Total	2412	2113	966	1919	

Means followed by different letters indicate a significant difference in the number of eggs at significance level $\alpha = 5\%$ (likelihood ratio test). Lowercase letter compares each plant among the treatments (row) and uppercase letter compares the different plants within each treatment (column). For total marginal, uppercase letter compares treatments, regardless of plant (row)

Fig. 3 Mean percentages of adult females of *Diaphorina citri* on *Murraya paniculata* plants in the presence of non-parasitized or parasitized nymphs over 24, 48, and 72 h**Table 3** Numbers (mean \pm standard error) of insects, *Diaphorina citri*, found on the four plants (A, B, C, D), in the presence of non-parasitized or parasitized nymphs on plant A, over 3 days

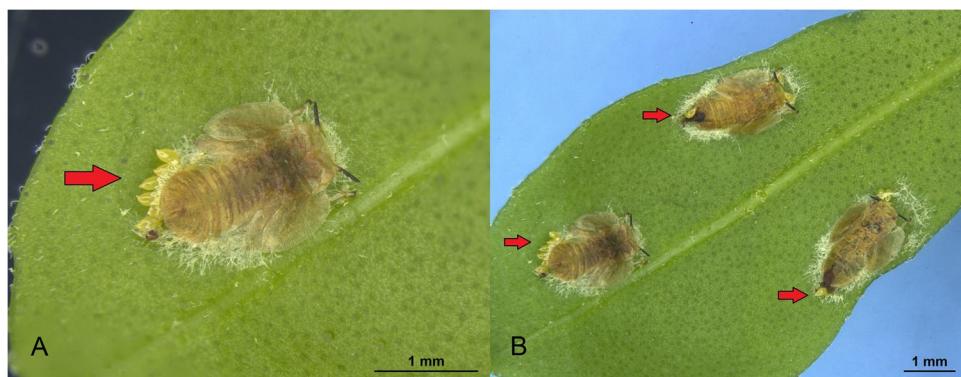
Treatment	Period (h)	Mean no. of insects			
		Plant A	Plant B	Plant C	Plant D
Non-parasitized nymphs	24	14.1 \pm 2.7 Aa	6.6 \pm 1.1 Ab	8.0 \pm 1.6 Aab	6.9 \pm 1.0 Ab
	48	12.1 \pm 2.2 Aa	6.0 \pm 1.2 Ab	7.7 \pm 1.4 Aab	6.6 \pm 0.7 Ab
	72	13.5 \pm 2.5 Aa	7.8 \pm 1.7 Aa	8.6 \pm 1.8 Aa	8.0 \pm 1.3 Aa
Parasitized nymphs	24	12.2 \pm 1.5 Aa	7.3 \pm 1.5 Ab	3.5 \pm 0.7 Ac	4.0 \pm 0.5 Ac
	48	11.7 \pm 1.5 Aa	7.0 \pm 1.4 Ab	3.3 \pm 0.7 Ac	4.4 \pm 0.5 Ac
	72	13.1 \pm 1.9 Aa	7.7 \pm 1.6 Aab	4.3 \pm 1.1 Ab	6.3 \pm 1.2 Ab

Means followed by different letters indicate a significant difference at significance level $\alpha = 5\%$ (likelihood ratio test). Uppercase letter compares the times inside plants for each treatment (rows), lowercase letter compares the plants at each time for each treatment (column)

Table 4 Numbers (mean \pm SD) of eggs of *Diaphorina citri* found on the four plants (A, B, C, D), in the presence of non-parasitized or parasitized nymphs on plant A, 72 h after the release of adults

(A) Treatment	Mean	(B) Mean n° of eggs			
		Plant A	Plant B	Plant C	Plant D
Non-parasitized nymphs	49.9 (\pm 7.7) a	40.5	41.9	37.6	40.0
Parasitized nymphs	30.0 (\pm 6.5) b	(\pm 11.2) A	(\pm 12.4) A	(\pm 10.7) A	(\pm 6.9) A
Total		810	839	747	800

Means followed by different letters indicate a significant difference at the significance level $\alpha = 5\%$ (likelihood ratio test). Lowercase letter compares the treatments (row) and uppercase letter compares the different plants (column)


Discussion

In this study, the presence of *D. citri* nymphs affected the movement behavior of adults. In the absence of nymphs, adult females tended to remain at the release site (plant A). When nymphs (parasitized or non-parasitized) were present at the release site (plant A), the adult females tended to disperse to other plants, reducing aggregation. The presence of nymphs also altered the females' oviposition behavior. In the absence of nymphs, oviposition rates were higher on the plant with the highest aggregation of adults (plant A). However, when non-parasitized or parasitized nymphs were present on plant A, the number of eggs deposited on plant A was reduced.

Psyllid females showed aggregative behavior at the release site (plant A) in situations where nymphs were absent or present in low/medium densities. The tendency to remain at the place of release or arrival in an orchard was also observed in the field by Arakawa and Miyamoto (2007) in wind-tunnel experiments, and by

Boina et al. (2009), who used protein markers to observe the bidirectional movement of insects between managed and unmanaged areas. These results support the idea that psyllids have low active mobility, even though they have a flight capacity of up to 2.4 km (Martini et al. 2014a).

The aggregative behavior observed may also be due to the attraction of *D. citri* to volatiles emitted by plants damaged by feeding of conspecifics present (Groot et al. 2003; Blackmer et al. 2004). In addition to the psyllid's attraction to citrus plants and orange jasmine (Patt and Sétamou 2010), its attraction to psyllid-damaged plants and its aggregation behavior were observed by Hijaz (2013) and Patt et al. (2018), who linked this result to increased release of salicylic acid, as previously found by Mann et al. (2012) with citrus. Although the study was carried out with plants infected with HLB, they observed an increase in methyl salicylate emission in plants that attracted more insects. Martini et al. (2014b), in their study with curry plants, also observed aggregated behavior of females of *D. citri* on damaged plants when fewer than 10 individuals

Fig. 4 **A** and **B** *Diaphorina citri* eggs under psyllid nymphs parasitized by *Tamarixia radiata*. Parasitism is evidenced by the presence of meconium and wax, on the back and around the body of the nymph, respectively

(females) were present. In the absence of damaged plants, the presence of more than 10 females had a repellent effect on other females, which were also not attracted by the presence of males of the species, although males were attracted by females.

In the absence of nymphs at the release site, the present results indicate that plants with more psyllids also had more eggs deposited. In this species, as in others such as *Cassida rubiginosa* (Coleoptera: Chrysomelidae) (Fujiyama et al. 2008) and *Thaumastocoris peregrinus* (Hemiptera: Thaumastocoridae) (Martínez and Bianchi 2010; Wilcken et al. 2010), the feeding and oviposition sites overlap, since *D. citri* adults and nymphs both prefer young growing shoots (Hall et al. 2013; Cifuentes-Arenas et al. 2018). This aggregation behavior of the adult and nymphal stages benefits the species, since it indicates better local abiotic conditions for development and reproduction (Sétamou et al. 2016; Cifuentes-Arenas et al. 2018). On the other hand, this aggregation also entails competition for space and food, in addition to increasing the risk of infections and the action of natural enemies (Martínez et al. 2014b), which may explain the change in the adults' behavior as the process continued, with an increase in the density of nymphs on plant A.

Knowing that the presence of conspecifics at a location indicates quality and the degree of competition, a decrease in numbers of both adult and immature insects is expected at these locations (Davis et al. 2011), as was observed here in the treatments with low and high density of nymphs. Bawin et al. (2014), Guo et al. (2014), and Kohandani et al. (2015) found similar results and determined that the presence of conspecifics above a certain threshold is required to trigger a “displacer” effect on insects. Although this “displacer” effect was observed in this study in both experimental scenarios (presence of non-parasitized nymphs and presence of parasitized nymphs; Tables 1 and 2), eggs were still deposited at these “occupied” sites, even if other plants of the same quality were available for feeding and oviposition in the same cage.

Studies on the impact of the presence of natural enemies on the reproductive rate of hosts/prey have shown that *D. citri* can reduce the number of offspring due to the presence of a control agent (Holmes and Bethel 1972; Price 1980; Nelson et al. 2004; Ninkovic et al. 2013; Hermann and Thaler 2014). In this study the

number of eggs in a presence of parasitized nymphs was lower than the number observed in cages with non-parasitized nymphs, although the analysis did not detect the effect of parasitism on number of laid eggs (p-value was marginally non-significant). However, in the presence of parasitized nymphs, *D. citri* laid eggs in the presence of the parasitoid, although the parasitoid was still developing within the psyllid nymphs (Fauvergue and Quilici 1991; Hoy and Nguyen 2000). *Diaphorina citri* also showed this behavior in another study (Seo et al. 2018), where it perceived and was repelled by the chemical traces of a natural enemy, the predator *H. convergens*, reducing its oviposition rate and excretions.

Detection of the presence of natural enemies has important consequences for the survival rate of an insect and can manifest at the level of predator/prey and host/parasitoid interactions as well as in intraguild competition (predator/parasitoid) interactions. For example, Milosavljević et al. (2021) found that the presence of *Linepithema humile* (Hymenoptera: Formicidae) strongly reduced the control of *D. citri* by *T. radiata*, since the ants defended the psyllids from the parasitoids in exchange for food. Thus, the development of behaviors by insects that minimize their risks in the presence of conspecifics and natural enemies is necessary from a biological point of view. For example, *T. radiata* marks the nymphs of *D. citri* with a pheromone after parasitizing them, to prevent super-parasitism (Mann et al. 2010) and can detect volatiles to avoid predating of their nymphs (Milosavljević et al. 2021).

The results obtained here reinforce the recommendation that *D. citri* control tactics should be focused on the nymphal stages, since in addition to contributing more effectively to the spread of HLB (Inoue et al. 2009; Diniz et al. 2021), the presence of nymphs can stimulate adults to disperse, also contributing to the spread of the disease.

Conclusion

The results showed that *D. citri* has an aggregated behavior, with a tendency to low mobility in the absence of nymphs. However, this behavior changes when nymphs are present, in low or high densities and whether or not the nymphs are parasitized. *D. citri* distinguishes unparasitized nymphs

from nymphs parasitized by *T. radiata*, and in this case, lays eggs close to the parasitized nymphs.

Acknowledgments We thank the Fund for Citrus Protection (FUNDECITRUS) (project Tamarixia 878) for financial support (scholarship); the São Paulo Research Foundation (FAPESP) (process 2018/02317-5) as part of the São Paulo Advanced Research Center for Biological Control (SPARCBIO) for material resources; and Dr. Janet W. Reid (JWR Associates) for English language editing. Carolina Reigada is grateful to the Coordination for the Improvement of Higher Education Personnel (CAPES) (PNDP: 2014.1.93.11.0) for financial support.

Author contributions Juliana S. Oliveira, Carolina Reigada, Alexandre J.F. Diniz and José R.P. Parra contributed to the conception and design of the study. Material preparation and data collection were performed by Juliana S. Oliveira, data analysis was performed by Juliana S. Oliveira, Carolina Reigada, Idemauro A.R. Lara and Rafael A. Moral. The first version of the manuscript was written by Juliana S. Oliveira and Carolina Reigada and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Funding This study was funded by Citrus Protection Fund (FUNDECITRUS) (Tamarixia 878 project), São Paulo Research Foundation (FAPESP) (process 2018/02317-5) and Coordination for the Improvement of Personnel from Higher Education (CAPES) (PNDP: 2014.1.93.11.0).

Declarations

Conflict of interest The authors have no conflict of interest to declare.

References

Agresti A (2013) Categorical Data Analysis, 3rd edn. Wiley, New York

Antolinez CA, Moyneur T, Martini X, Rivera MJ (2021) High temperatures decrease the flight capacity of *Diaphorina citri* Kuwayama (Hemiptera: Liviidae). *Insects* 12:394. <https://doi.org/10.3390/insects12050394>

Arakawa K, Miyamoto K (2007) Flight ability of Asian citrus psyllid, *Diaphorina citri* Kawayama (Homoptera: Psylidae) measured by a flight mill. *Res Bull Pl Prot Jpn* 43:23–26

Bawin T, De Backer L, Dujeu D et al (2014) Infestation level influences oviposition site selection in the tomato leafminer *Tuta absoluta* (Lepidoptera: Gelechiidae). *Insects* 5:877–884. <https://doi.org/10.3390/insects5040877>

Bhavakul K, Intavimolsri S, Vichitrananda S, Kratureuk C, Prommintara M (1982) The current citrus disease situation in Thailand with emphasis on citrus greening. *Proc Intl Soc Citrict 4:464–466*

Blackmer JL, Rodriguez-Saona C, Byers JA, Shope KL, Smith JP (2004) Behavioral response of *Lugus Hesperus* to conspecifics and headspace volatiles of alfalfa in a Y-tube olfactometer. *J Chem Ecol* 30:1547–1564

Boina DR, Meyer WL, Onagbola EO, Stelinski LL (2009) Quantifying dispersal of *Diaphorina citri* (Hemiptera: Psyllidae) by immunomarking and potential impact of unmanaged groves on commercial citrus management. *Environ Entomol* 38:1250–1258. <https://doi.org/10.1603/022.038.0436>

Bové JM (1986) Greening in the Arabian Peninsula: towards new techniques for its detection and control. *FAO Plant Protect Bull* 34:7–14

Bové JM (2006) Huanglongbing: a destructive, newly emerging, century-old disease of citrus. *J Plant Pathol* 88:7–37

Bullock JM, Kenward RE, Hails RS (2002) *Dispersal Ecology: the 42nd Symposium of the British Ecological Society*. Blackwell, Oxford, p 458

Capoor SP, Rao DG, Viswanath SM (1974) Greening disease of citrus in the Deccan Trap Country and its relationship with the vector, *Diaphorina citri* Kuwayama pp 43–49. In: Weathers LG, Cohen M (eds) *Proc 6th Conf Int Org Citrus Virol*. University of California, Riverside, California, USA

CDA – Coordenadoria de Defesa Agropecuária (2019) Dados da Citricultura Paulista. Dados da Citricultura Paulista. <http://www.defesaagropecuaria.sp.gov.br/www/gdsv/index?action=dadosCitriculturaPaulista>

Cifuentes-Arenas JC, de Goes A, de Miranda MP, Beattie GAC, Lopes SA (2018) Citrus flush shoot ontogeny modulates biotic potential of *Diaphorina citri*. *PLoS One* 13:e0190563. <https://doi.org/10.1371/journal.pone.0190563>

Dala-Paula BM, Plotto A, Bai J et al (2019) Effect of Huanglongbing or Greening disease on orange juice quality, a review. *Front Plant Sci* 9:1976. <https://doi.org/10.3389/fpls.2018.01976>

Davis JM, Nufio CR, Papaj DR (2011) Resource quality or competition: why increase resource acceptance in the presence of conspecifics? *Behav Ecol* 22:730–737. <https://doi.org/10.1093/beheco/arr042>

Dingle H (1972) Migration strategies of insects: Migration is an environmentally modified physiological syndrome adapted for dispersal and colonization. *Science* 175:1327–1335. <https://doi.org/10.1126/science.175.4028.1327>

Diniz AJF (2013) Otimização de criação de *Diaphorina citri* Kuwayama (Hemiptera: Liviidae) e *Tamarixia radiata* (Waterson, 1922) (Hymenoptera: Eulophidae), visando a produção em larga escala do parasitóide e avaliação de seu estabelecimento em campo. University of São Paulo (USP), Thesis

Diniz AJF, Garcia AG, Alves GR, Reigada C, Vieira JM, Parra JRP (2020) The enemy is outside: Releasing the parasitoid *Tamarixia radiata* (Hymenoptera: Eulophidae) in external sources of HLB inocula to control the Asian Citrus Psyllid *Diaphorina citri* (Hemiptera: Liviidae). *Neotrop Entomol* 49:250–257

Diniz AJF, Alves GR, Vieira JM, Parra JRP (2021) Manejo do psílideo dos citros com uso do parasitóide *Tamarixia radiata*: uma nova abordagem em controle biológico. In: Parra JRP, Pinto AS, Nava DE, Oliveira CR, Diniz AJF (eds) *Controle Biológico com Parasitoides e Predadores na Agricultura Brasileira*. Fealq, Piracicaba, pp 127–158

FAO (2002) Saudi citrus industry thrives in desert. *Food and Agriculture Organization, United Nations, Rome*

Fauvergue X, Quilici S (1991) Étude de certains paramètres de la biologie de *Tamarixia radiata* (Waterston, 1992) (Hymenoptera: Eulophidae), ectoparasitoïde primaire de *Diaphorina citri* Kuwayama (Hemiptera: Psyllidae), vecteur asiatique du greening des agrumes. *Fruits* 46:179–185

Fraser LR (1978) Recognition and control of citrus virus diseases in Australia. *Proc Intl Soc Citricult* 3:178–181

French JV, Kahlke CJ, da Graça JV (2001) First record of the asian citrus psylla, *Diaphorina citri* Kuwayama (Homoptera: Psyllidae), in Texas. *Subtrop Plant Sci* 53:14–15

Fritz RS (1982) Selection for host modification by insect parasitoids. *Evolution* 36:283–288. <https://doi.org/10.2307/2408046>

Fujiyama N, Torii C, Akabane M, Katakura H (2008) Oviposition site selection by herbivorous beetles: a comparison of two thistle feeders, *Cassida rubiginosa* and *Henosepilachna niponica*. *Entomol Exp Appl* 128:41–48. <https://doi.org/10.1111/j.1570-7458.2008.00712.x>

Garcia AG, Diniz AJF, Parra JRP (2019) A fuzzy-based index to identify suitable areas for host-parasitoid interactions: Case study of the Asian citrus psyllid *Diaphorina citri* and its natural enemy *Tamarixia radiata*. *Bio Control* 135:135–140. <https://doi.org/10.1016/j.biocontrol.2019.05.001>

Garcia AG, Jamielniak JA, Diniz AJF, Parra JRP (2021) The importance of integrated pest management to flatten the huanglongbing (HLB) curve and limit its vector, the Asian citrus psyllid. *Entomol Gen* 42:349–359. <https://doi.org/10.1127/entomologia/2021/1247>

Garnier M, Bové JM (1996) Distribution of the Huanglongbing (greening) *Liberibacter* species in fifteen African and Asian countries. In: Proceedings of 13th conference IOCIV, Riverside, pp 388–391

Grafton-Cardwell EE, Stelinski LL, Stansly PA (2013) Biology and management of Asian citrus psyllid, vector of the Huanglongbing pathogens. *Annu Rev Entomol* 58:413–432

Groot AT, Heijboer A, Visser JH, Dicke M (2003) Oviposition preference of *Lygocoris pabulinus* (Het., Miridae) in relation to plants and conspecifics. *J Appl Entomol* 127:65–71. <https://doi.org/10.1046/j.1439-0418.2003.00669.x>

Guo H, Meng L, Wang Y, Zheng L, Li B (2014) Oviposition behavior of the predatory midge *Aphidoletes aphidimyza* in response to aphid patch quality. *J Insect Behav* 2:816–825

Halbert SE (1998) Entomology section. *Tri-Ology* 37:5–9

Hall DG, Richardson ML, Ammar ED, Halbert SE (2013) Asian citrus psyllid, *Diaphorina citri*, vector of citrus huanglongbing disease. *Entomol Exp Appl* 146:207–223. <https://doi.org/10.1111/eea.12025>

Hermann SL, Thaler JS (2014) Prey perception of predation risk: volatile chemical cues mediate non-consumptive effects of a predator on a herbivorous insect. *Oecologia* 176:669–676

Hijaz F, El-Shesheny I, Killiny N (2013) Herbivory by the insect *Diaphorina citri* induces greater change in citrus plant volatile profile than does infection by the bacterium, *Candidatus Liberibacter asiaticus*. *Plant Signal Behav* 8:e25677. <https://doi.org/10.4161/psb.25677>

Holmes JC, Bethel WM (1972) Modification of intermediate host behavior by parasites. *Zool J Linn Soc-Lond* 51:123–149

Hoy MA, Nguyen R (2000) Classical biological control of Asian citrus psylla. *Citrus Indust* 81:48–50

Hung TH, Hung SC, Chen CN, Hsu MH, Su HJ (2004) Detection by PCR of *Candidatus Liberibacter asiaticus*, the bacterium causing citrus huanglongbing in vector psyllids: application to the study of vector-pathogen relationships. *Plant Pathol* 53:96–102. <https://doi.org/10.1111/j.1365-3059.2004.00948.x>

Inoue H, Ohnishi J, Ito T et al (2009) Enhanced proliferation and efficient transmission of *Candidatus Liberibacter asiaticus* by adult *Diaphorina citri* after acquisition feeding in the nymphal stage. *Ann Appl Biol* 155:29–36. <https://doi.org/10.1111/j.1744-7348.2009.00317.x>

Kobori Y, Nakata T, Ohto Y, Takasu F (2011) Dispersal of adult Asian citrus psyllid, *Diaphorina citri* Kuwayama (Homoptera: Psyllidae), the vector of citrus greening disease, in artificial release experiments. *Appl Entomol Zool* 46:27–30

Kohandani F, Le Goff GJ, Hance T (2015) Does insect mother know under what conditions it will make their offspring live? *Insect Sci* 24:141–149. <https://doi.org/10.1111/1744-7917.12300>

Lara IAR, Hinde J, Taconeli CA (2017) An alternative method for evaluating stationarity in transition models. *J Stat Comput Simul* 87:1–19. <https://doi.org/10.1080/00949655.2017.1351562>

Lara IAR, Moral RA, Taconeli CA, Reigada C, Hinde J (2020) A generalized transition model for grouped longitudinal categorical data. *Biom J* 62:1837–1858. <https://doi.org/10.1002/bimj.201900394>

Lewis-Rosenblum H, Martini X, Tiwari S, Stelinski LL (2015) Seasonal movement patterns and long-range dispersal of Asian citrus psyllid in Florida citrus. *J Econ Entomol* 108:3–10. <https://doi.org/10.1093/jee/tou008>

Mann RS, Qureshi JA, Stansly PA, Stelinski LL (2010) Behavioral response of *Tamarixia radiata* (Waterson) (Hymenoptera: Eulophidae) to volatiles emanating from *Diaphorina citri* Kuwayama (Hemiptera: Psyllidae) and citrus. *J Insect Behav* 23:447–458

Mann RS, Ali JG, Hermann SL et al (2012) Induced release of a plant-defense volatile ‘deceptively’ attracts insect vectors to plants infected with a bacterial pathogen. *PLoS Pathog* 8:e1002610. <https://doi.org/10.1371/journal.ppat.1002610>

Martínez G, Bianchi M (2010) Primer registro para Uruguay de la chinche del eucalipto, *Thaumastocoris peregrinus* Carpintero y Dellapé, 2006 (Heteroptera: Thaumastocoridae). *Agrociencia* 14:15–18

Martínez AL, Wallace JM (1968) *Citrus* leaf-mottle-yellows disease in the Philippines and transmission of the causal virus by a psyllid, *Diaphorina citri*. *Plant Dis Rep* 51:692–695

Martini X, Hoyte A, Stelinski LL (2014a) Abdominal color of the Asian citrus psyllid (Hemiptera: Liviidae) is associated with flight capabilities. *Ann Entomol Soc Am* 107:842–847. <https://doi.org/10.1603/AN14028>

Martini X, Kuhns EH, Hoyte A, Stelinski LL (2014b) Plant volatiles and density-dependent conspecific female odors

are used by Asian citrus psyllid to evaluate host suitability on a spatial scale. *Arth-Plant Int* 8:453–460

Mazzi D, Dorn S (2012) Movement of insect pests in agricultural landscapes. *Ann Appl Biol* 160:97–113. <https://doi.org/10.1111/j.1744-7348.2012.00533.x>

McCullagh P, Nelder JA (1989) Binary data. In: Generalized linear models, vol 98. Springer, US, p 148

Milosavljević I, Morgan DJW, Massie RE, Hoddle MS (2021) Density dependent mortality, climate, and Argentine ants affect population dynamics of an invasive citrus pest, *Diaphorina citri*, and its specialist parasitoid, *Tamarixia radiata*, in Southern California, USA. *Biolog Control* 159:104627. <https://doi.org/10.1016/j.biocontrol.2021.104627>

Minter M, Pearson A, Lim KS, Wilson K, Chapman JW, Jones CM (2018) The tethered flight technique as a tool for studying life-history strategies associated with migration in insects. *Ecol Entomol* 43:397–411. <https://doi.org/10.1111/een.12521>

Moral R, Hinde J, Demétrio C (2017) Half-normal and over-dispersed models in R: The hnp package. *J Stat Softw* 81:1–23

Naranjo SE (2019) Assessing insect flight behavior in the laboratory: A primer on flight mill methodology and what can be learned. *Ann Entomol Soc Am* 112:182–199. <https://doi.org/10.1093/aesa/say041>

Nava DE, Torres MLG, Rodrigues MDL, Bento JMS, Parra JRP (2007) Biology of *Diaphorina citri* (Hem., Psyllidae) on different hosts and at different temperatures. *J Appl Entomol* 131:709–715. <https://doi.org/10.1111/j.1439-0418.2007.01230.x>

Nelson EH, Matthews CE, Rosenheim JA (2004) Predators reduce prey population growth by inducing changes in prey behavior. *Ecology* 85:1853–1858. <https://doi.org/10.1890/03-3109>

Ninkovic V, Feng Y, Olsson U, Pettersson J (2013) Ladybird footprints induce aphid avoidance behavior. *Biolog Control* 65:63–71. <https://doi.org/10.1016/j.biocontrol.2012.07.003>

Nufio CR, Papaj DR (2001) Host marking behavior in phytophagous insects and parasitoids. *Entomol Exp Appl* 99:273–293. <https://doi.org/10.1046/j.1570-7458.2001.00827.x>

Oke AO, Oladigbolu AA, Kunta M, Alabi OJ, Sétamou M (2020) First report of the occurrence of asian citrus psyllid *Diaphorina citri* (Hemiptera: Liviidae), an invasive species in Nigeria. *West Africa. Sci Rep* 10:9418

Parra JRP, Alves GR, Diniz AJF, Vieira JM (2016) *Tamarixia radiata* (Hymenoptera: Eulophidae) × *Diaphorina citri* (Hemiptera: Liviidae): Mass rearing and potential use of the parasitoid in Brazil. *J Integr Pest Manag* 7:1–11. <https://doi.org/10.1093/jipm/pmw003>

Patt JM, Sétamou M (2010) Responses of the Asian citrus psyllid to volatiles emitted by the flushing shoots of its Rutaceous host plants. *Environ Entomol* 39:618–624. <https://doi.org/10.1603/EN09216>

Patt JM, Robbins PS, Niedz R, McCollum G, Alessandro R (2018) Exogenous application of the plant signalers methyl jasmonate and salicylic acid induces changes in volatile emissions from citrus foliage and influences the aggregation behavior of Asian citrus psyllid (*Diaphorina citri*), vector of Huanglongbing. *PLoS One* 13:e0193724. <https://doi.org/10.1371/journal.pone.0193724>

Pelz-Stelinski KS, Brlansky RH, Ebert TA, Rogers ME (2010) Transmission parameters for *Candidatus Liberibacter asiaticus* by Asian citrus psyllid (Hemiptera: Psyllidae). *J Econ Entomol* 103:1531–1541. <https://doi.org/10.1603/EC10123>

Price PW (1980) Evolutionary biology of parasites. Princeton University Press, Princeton. <https://doi.org/10.1017/S0031182000061850>

R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria <https://www.R-project.org/>

Seo M, Rivera MJ, Stelinski LL (2018) Trial chemicals of the convergens ladybird beetle, *Hippodamia convergens*, reduce feeding and oviposition by *Diaphorina citri* (Hemiptera: Psyllidae) on citrus plants. *J Insect Behav* 31:298–308

Sétamou M, Simpson CR, Alabi OJ, Nelson SD, Telagamsetty S, Jifon JL (2016) Quality matters: influences of citrus flush physicochemical characteristics on population dynamics of the Asian citrus psyllid (Hemiptera: Liviidae). *PLoS One* 11:e0168997. <https://doi.org/10.1371/journal.pone.0168997>

Sétamou M, Flores D, French JV, Hall DG (2020) Dispersion patterns and sampling plants for *Diaphorina citri* (Hemiptera: Psyllidae) in citrus. *J Econ Entomol* 101:1478–1487. <https://doi.org/10.1093/jee/101.4.1478>

Sharma DR (2008) Population dynamics in relation to abiotic factors and management of citrus psylla in Punjab. *Indian J Hortic* 65:417–422

Shimwela MM, Narouei-Khandan HA, Halbert SE et al (2016) First Occurrence of *Diaphorina citri* in East Africa, Characterization of the Ca. *Liberibacter* species causing Huanglongbing (HLB) in Tanzania, and potential further spread of *D. Citri* and HLB in Africa and Europe. *Eur J Plant Pathol* 146:349–368

Shivankar VJ, Rao CN, Singh S (2000) Studies on citrus psylla, *Diaphorina citri* Kuwayama: a review. *Agric Rev* 21:199–204

Singerman A, Useche MP (2016) Impact of citrus greening on citrus operations in Florida. University of Florida/Institute of Food and Agricultural Sciences Extension. FE983

Stinner RE, Barfield CS, Stimac JL, Dohse L (1983) Dispersal and movement of insect pests. *Ann Rev Entomol* 28:319–335

Tiwari S, Lewis-Rosenblum H, Pelz-Stelinski K, Stelinski LL (2010) Incidence of *Candidatus Liberibacter asiaticus* infection in abandoned citrus occurring in proximity to commercially managed groves. *J Econ Entomol* 103:1972–1978. <https://doi.org/10.1603/EC10149>

Tomaseto AF, Krugner R, Lopes JRS (2016) Effect of plant barriers and citrus leaf age on dispersal of *Diaphorina citri* (Hemiptera: Liviidae). *J Appl Entomol* 140:91–102. <https://doi.org/10.1111/jen.12249>

Tomaseto AF, Miranda MP, Moral RA, Lara IAR, Fereres A, Lopes JRS (2017) Environmental conditions for *Diaphorina citri* Kuwayama (Hemiptera: Liviidae) take-off. *J Appl Entomol* 142:104–113. <https://doi.org/10.1111/jen.12418>

Tomaseto AF, Marques RN, Fereres A et al (2019) Orange jasmine as a trap control to control *Diaphorina citri*. *Sci Rep* 9:2070

Wilcken CF, Soliman EP, de Sá LAN et al (2010) Bronze bug *Thaumastocoris peregrinus* Carpintero and Dellapé

(Hemiptera: Thaumastocoridae) on Eucalyptus in Brazil and its distribution. *J Plant Prot Res* 50:201–205

Xu CF, Xia YH, Li KB, Ke C (1988) Further study of the transmission of citrus huanglongbing by a psyllid, *Diaphorina citri* Kuwayama. In: Timmer LW, Garnsey SM, Navarro L (eds) Proc 10th Conf Int Org Citrus Virol, 17–21 November 1986, Valencia, Spain. University of California, Riverside, CA, USA, International Organization of Citrus Virologists, pp 243–248

Yamamoto PT, Paiva PEB, Gravina S (2001) Population dynamics of *Diaphorina citri* Kuwayama (Hemiptera: Psyllidae) in citrus orchards in the North of São Paulo State, Brazil. *Neotrop Entomol* 30:165–170. <https://doi.org/10.1590/S1519-566X2001000100025>

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.