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of Diaphorina citri (Hemiptera: Psyllidae)?
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Abstract Diaphorina citri is the vector of the bac-
terium that cause “huanglongbing” (HLB). The psyl-
lid acquires the pathogen after feeding on infected
plants and transmits it to other trees as it moves
through the orchard. The psyllid’s movement is
directly affected by abiotic and biotic factors, such
as the presence of conspecific insects and natural
enemies. We evaluated the effects of the presence of
conspecific nymphs either not parasitized or para-
sitized by Tamarixia radiata on the movement and
oviposition of adult female D. citri. Diaphorina citri
females were released into cages containing a row of
four equidistant Murraya paniculata plants. The first
plant, the release point, had one of three conditions:
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no nymphs; non-parasitized nymphs (high and low
densities); or previously parasitized nymphs. At 24,
48, and 72 h following release, the females on each
plant in the cage were counted. At the end of the
observations (72 h), the females were removed, and
the eggs laid on the plants were counted. The pres-
ence of non-parasitized nymphs, at low and high den-
sities, increased the tendency of adult movement and
reduced the total number of laid eggs, compared with
cases in which nymphs were absent. On the other
hand, the presence of nymphs increased the egg dis-
tribution by females over all available plants in the
cages. In these cases, higher number of adult females
and eggs were observed in plants without nymphs,
compared with the plant in which nymphs were pre-
sent (release point). The conditions of nymphs, i.e.,
if parasitized or not, did not change the movement
behavior and the distribution of eggs deposited over
plants in the cages. However, the number of eggs laid
by females was low for the cases in which the nymphs
were parasitized. The findings can contribute to
establishing the optimal of application of the psyllid
management techniques, and improving the efficiency
of natural enemy releases considering that the pest
can be present at the field in different life stages.

Keywords Aggregation - Intraspecific

competition - Choice of oviposition and feeding site -
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Introduction

Biotic and abiotic factors directly affect the ability of
living beings to move, as they are decisive in determin-
ing the ability of species to disperse and survive (Dingle
1972; Stinner et al. 1983; Minter et al. 2018; Naranjo
2019). In this context, the movement of insect pests
defines their spatial temporal abundance and distribu-
tion, and consequently the severity of the damage they
cause to the attacked crops, as well the ecological and
evolutionary impact on population regulation, commu-
nity dynamics and gene flow (Mazzi and Dorn 2012).
Understanding the effects of biotic and abiotic factors
on the behavior of insects during their movement and
search for oviposition and feeding sites can contribute
to management programs for insect agricultural pests,
such as the development of pest occurrence and predic-
tion models or models that direct the best moment of
application of the management tactics (Bullock et al.
2002; Mazzi and Dorn 2012; Garcia et al. 2019, 2021).
The Asian citrus psyllid Diaphorina citri trans-
mits the bacterium that causes ‘“huanglongbing”
(HLB) is native to Asia. Due to its dispersal capac-
ity, which increases from the immature to the adult
stage (Sétamou et al. 2020), this species is now
present on most continents (Halbert 1998; French
et al. 2001; Bové 2006; Shimwela et al. 2016;
Oke et al. 2020). Consider rewording...transport
between continents is presumably human-aided
Although D. citri adults tend to remain in the same
grove after their arrival, they continually move over
short or long distances within the orchard (Boina et al.
2009; Kobori et al. 2011; Lewis-Rosenblum et al.
2015; Tomaseto et al. 2016, 2019). During these move-
ments, adults and nymphs can acquire the bacterium
(HLB) by feeding on an infected plant for 30 minutes
or more (Capoor et al. 1974; Hung et al. 2004; Pelz-
Stelinski et al. 2010). The adult becomes a HLLB trans-
mitter 3 days after feeding (Xu et al. 1988) and the
nymphs transmit HLB after they become adults (Inoue
et al. 2009; Pelz-Stelinski et al. 2010). Infected trees
become unviable after 4-5 years, and their fruits drop
before ripening and have lower sugar content (Grafton-
Cardwell et al. 2013; Dala-Paula et al. 2019).
Considered the most destructive citrus disease,
in 2014 HLB reduced orange production in Flor-
ida by approximately 43% (Singerman and Useche
2016) and has decimated more than 50 million trees
in Brazil (CDA 2019). The disease significantly
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reduces citrus production in Africa (Garnier and
Bové 1996; FAO 2002), Asia (Martinez and Wal-
lace 1968; Bhavakul et al. 1982; Bové 1986; Sharma
2008; Shivankar et al. 2000), and Oceania (Fraser
1978). Infection reduction is achieved by eliminat-
ing infected plants, using healthy seedlings for plant-
ing, and managing the vector insect through applica-
tion of chemical products and/or release of natural
enemies, mainly Tamarixia radiata (Hymenoptera:
Eulophidae), an ectoparasitoid that attacks the psyl-
lid nymphs (Diniz et al. 2020; Garcia et al. 2021).

The movement of psyllids in grove is influenced
by the presence and density of shoots available on
the host, temperature, relative humidity, and wind
(Yamamoto et al. 2001; Lewis-Rosenblum et al.
2015; Tomaseto et al. 2017; Garcia et al. 2019;
Antolinez et al. 2021). In addition to these factors,
the frequency and pattern of movement of D. citri
adults in the search for host plants and the selection
of microhabitats can also be influenced by competi-
tive interactions with conspecifics and by encounters
with natural enemies (Fritz 1982; Nufio and Papaj
2001). Natural control agents can, in addition to
directly reducing populations, indirectly affect the
behavior, physiology, morphology, and development
of their prey/hosts. This indirect effect or non-con-
sumptive effect was shiown in studies with parasites
(Holmes and Bethel 1972; Price 1980) and predators
that found reductions in the population growth of
aphids, Acyrthosiphon pisum (Homoptera: Aphidi-
dae) by damsel bugs (Hemiptera: Nabidae) (Nelson
et al. 2004), Leptinotarsa decemlineata (Coleoptera:
Chrysomelidae) by Podisus maculiventris (Heter-
optera: Pentatomidae) (Hermann and Thaler 2014),
and Diaphorina citri by Hippodamia convergens
(Coleoptera: Coccinelidae) (Seo et al. 2018).

Since most of the D. citri primary inoculum sites
are external to commercial orchards (Tiwari et al.
2010), knowledge of parameters that will stimulate
the start of psyllid migration from these sites as well
as of the effects of intraspecific competition (i.e., den-
sity of conspecifics) and the presence of natural ene-
mies on the pattern of movement and oviposition of
D. citri adults can contribute to the improvement of
techniques used in integrated management (IPM) of
this insect pest, for example, to define pest sampling
techniques, as well the distribution of release points
for natural enemy releases in the field. This study
evaluated the movement of psyllid females and the
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pattern of egg distribution in experimental cages con-
taining host plants in different situations: (i) healthy
plants (i.e., without psyllid nymphs), (if) plants with
D. citri nymphs, and (iii) plants with D. citri nymphs
parasitized by T. radiata.

Materials and methods
Colony of insects and host plants

For this study, nymphs and adults (females) of D. citri
and adults of T. radiata were obtained from the rear-
ing colonies at the Laboratory of Insect Biology of the
University of Sdo Paulo —-ESALQ/USP, Piracicaba,
maintained following the method of Parra et al. (2016).
The host plants used were orange jessamine, Mur-
raya paniculata (L.) Jack, kept in a greenhouse under
natural conditions and with automatic ventilation that
maintains the temperature between 25 and 28 °C.

Experimental design

To evaluate the effects of the presence of conspecif-
ics and the presence of parasitized nymphs on the
movement and oviposition pattern of D. citri during
the search for available plants for food and devel-
opment of its offspring, a group of 90 adult psyllid
females, 9-days old (average period of onset of ovi-
position) (Nava et al. 2007), was used. Prior to the
beginning of the experiment, females were kept for
9 days in cages containing males, to ensure mating.
After this period, the 90 females were selected ran-
domly from the cages and but you just mentioned
that there were (only) 90 females in the cagetrans-
ferred to fabric tunnel cages (200 X 60 X 70 cm),
each containing 4 tubes (250 ml) with 4 orange jes-
samine shoots per tube and spaced equidistantly from

each other (Fig. 1). The shoots had an average length
of 1 cm, as this is the most attractive size for ovipo-
sition (Diniz 2013). After the insects were released,
the number of females on each plant (A, B, C, and D)
was counted to assess the movement of insects on the
available plants over 24, 48, and 72 h. At the end of
72 h, the total number of eggs laid on each plant was
also counted. The cages were kept in the greenhouse
under the same conditions described above.

In the first set of experiments, the effect of intraspe-
cific competition on the movement and distribution of
D. citri eggs was evaluated. Inside the experimental
cages, 4" and 5" instar psyllid nymphs were placed
on the first plant (plant A, release site). Two nymph
densities (i.e., treatments) were established: (i) low
density, with 15 nymphs present; and (ii) high density,
with 70 nymphs present. A control consisted of plants
with no nymphs. Ten replicates were performed for
each treatment and control.

In the second set of experiments, the effect of the
presence of parasitized nymphs on the movement
behavior of D. citri and its eggs distribution was eval-
uated, using two treatments: (i) presence of 25 non-
parasitized D. citri nymphs on plant A and (ii) pres-
ence of 25 nymphs previously parasitized by 7. radiata
on plant A. Ten replicates were performed for each
treatment. Treatment without the nymphs was done in
the first experiment. The parasitized nymphs were eas-
ily recognized by the mummified aspect, by the pres-
ence of meconium and wax around the body (Fig. 4).

Data analyses

For the analysis of the movement of insects between
plants over time (24, 48, and 72 h) an extension of the
discrete-time transition models for clustered nominal
data was used, according to the procedure proposed
by Lara et al. (2020). In this procedure, a multinomial

Fig. 1 Experimental cage /m
to evaluate the movement

and distribution pattern of
Diaphorina citri eggs on a

Murraya paniculata plants o

60 cm
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distribution was assumed for the response variable,
with five categories: Plant A, Plant B, Plant C, Plant
D, and none (insects that were in the cage but not on
one of the plants), each representing the preference
of insect groups, and the generalized logit models
were fitted (Agresti 2013). The first-order Markov
stochastic assumption was used to fit the model,
i.e., the number of insects on each of the plants was
incorporated into the linear predictor of the model as
additional covariates. To decide between a stationary
process or not, the likelihood ratio test proposed by
Lara et al. (2017) was used. If the stationary model is
assumed, in practice, insects move through the vases,
following a homogeneous pattern over time.

For the analysis of the variation of the total num-
ber of eggs deposited on the four plants (A, B, C,
and D) after 72 h, considering the possible effect of
treatments (experiment 1: high nymph densities, low
nymph density, and absence of nymphs; experiment
2: parasitized nymphs and non-parasitized nymphs),
the Generalized Linear Model was fitted assuming a
Poisson distribution, considering the Quasi-Poisson
model when over dispersion is found, which is a com-
mon phenomenon with count data with a variance
much greater than the mean (McCullagh and Nelder
1989). The best statistical model was chosen through
comparisons between the adjustments of the complete
models and models with the reduction of explana-
tory variables by the Akaike criterion (AIC). The

quality of the adjustments obtained by the models
was assessed using the “half-normal-plot” graph with
simulated envelopes at the 95% level (Moral et al.
2017). All analyses were performed using the R soft-
ware (R Core Team 2019).

Results

Experiment 1: Movement rate of females and egg dis-
tribution pattern of Diaphorina citri in the presence
of non-parasitized nymphs

Time variation (24, 48, and 72 h), covariates for psyl-
lid occupation options (plants A, B, C, D, and none),
and the presence of nymphs (low or high density) sig-
nificantly affected the movement of the adult females
of D. citri (LRV = 55.34, df = 28, p < 0.01; LRV =
746.67, df = 16, p < 0.01; and LRV = 13640.51, df =
8, p < 0.01, respectively). The results showed that in the
control group, in which nymphs were absent, the aver-
age proportion of insects remained higher on plant A
(insect release point) during the three evaluation peri-
ods (24, 48, and 72 h) compared to the proportion of
insects that remained on plant A when nymphs were
present (Fig. 2, Table 1). At low and high nymph densi-
ties with the passage of time, females tended to move
toward the other plants in the cages (Table 1). The pro-
portion of psyllids elsewhere than on the plants was

Low density Control

Fig. 2 Mean percentages of High density
adult females of Diaphorina
citri on Murraya paniculata 100 A
plants in the absence and - -
presence of nymphs in low
and high densities over 24,
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Table 1 Numbers (mean =+ standard error) of insects found on the four plants (A, B, C, D) after release of Diaphorina citri on plant
A (with the presence or absence of nymphs in low or high density), over 3 days

Treatment Period (h) Mean no. of insects
Plant A Plant B Plant C Plant D
Absence of nymphs 24 19.5 + (2.5) Aa 8.4 + (1.9) Aab 3.9+ (1.2) Ab 5.1+ (1.1) Ab
(Control) 48 18.9 + (2.3) Aa 9.0 + (2.3) Aab 4.2 £ (0.9) Ab 6.0 + (1.3) Ab
72 15.6 £ (2.3) Aa 10.1 + (2.1) Aab 43 +(1.1) Ab 7.6 £ (1.7) Ab
Low nymph density 24 12.1 +£(2.8) Aa 6.0 + (1.1) Aab 39+ (1.1) Ab 6.9 + (2.0
Aab
48 6.0+ (2.1) ABa 6.7 +(0.9) Aa 45+ (1.3) Aa 7.5+ (2.1) Aa
72 3.8+ (1.6)Ba 50x(1.1) Aa 53 +£(1.5) Aa 57+(1.9) Aa
High nymph density 24 8.0+ (1.6) Aa 8.1+ (1.8) Aa 3.6 + (0.6) Ab 9.1 +(1.6) Aa
48 3.4 +(0.9) Bb 7.1 +(2.0) Aab 2.7 +(0.5) Ab 10.1 +(2.0)
Aa
72 24 +(1.1) Bb 8.0+ (2.1) Aa 4.5 + (0.7) Aab 85+ (2.1) Aa

Means followed by different letters indicate a significant difference at significance level a = 5% (likelihood ratio test). Uppercase let-
ter compares the times inside plants for each treatment (rows), lowercase letter compares the plants at each time for each treatment

(column)

also higher and increased with time when nymphs were
present, indicating a greater tendency to move com-
pared to the control group (Fig. 2).

The presence of nymphs (low or high density)
and the distance of the plants from the release point
(plant A) significantly affected the distribution of
eggs on the different plants (Fg os= 3.83, p < 0.01).
In the control group, the highest number of eggs was
found on plant A. In plants B, C, and D, fewer eggs
were laid and the numbers of eggs deposited on these
plants did not differ significantly (Table 2). The pres-
ence of nymphs at the release point (plant A) resulted
in changes in the distribution of eggs by females.
When the density of nymphs on plant A was low,
the distribution of eggs was more uniform among
the plants in the cage, with no significant difference
among plants. However, when the density of nymphs
on plant A was high, more eggs were observed on
plants D and B, in that order, 72 h after the females
were released into the cages (Table 2).

Experiment 2: Movement rate of females and pat-
tern of egg distribution of Diaphorina citri in the
presence of non-parasitized nymphs and nymphs par-
asitized by Tamarixia radiata

The variation in time (24, 48, and 72 h), the covar-
iates for occupation options by the psyllid (plants A,
B, C, D, and none), and the presence of nymphs (par-
asitized or not parasitized) significantly affected the

movement on the plants by adult females of D. citri
(LRV = 60.44, df = 24, p < 0.01; LRV = 405.92,
df = 16, p < 0.01, and LRV = 3258.7, df =4, p <
0.01, respectively). The results showed that number
of adult psyllids on each plant in the cage did not
differ over the observation period (24, 48 and 72h)
(Fig. 3 and Table 3). However, comparing the pro-
portion of psyllids among the plants on each period
of time, when parasitized nymphs were present, the
adult psyllids showed the tendency to remain in plant
A. On the other hand, when nymphs were not para-
sitized, the insects tendend to move toward the other
plants in the cages (Fig. 3, Table 3).

Regarding the distribution of eggs on the four
plants, there was no effect of plant and parasitism
interaction (F;;, = 0.3017, p = 0.8241). The plant
effect was also not significant (F; ;5= 0.0349, p =
0.9912). However, the presence of non-parasitized
or parasitized nymphs had a non-significant but mar-
ginal effect (F, ;4 = 3.74, p = 0.0571) on the distri-
bution of eggs on the four plants. The mean number
of eggs was high in cages in which nymphs were not
parasitized (Table 4A). There was no significant dif-
ference between the number of eggs deposited among
plants (Table 4B). When the present nymphs on plant
A were parasitized, females laid their eggs under
nymphs (Fig. 4), differing from the other cases, in
which the eggs were laid on the plant shoots.
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Table 2 Numbers (mean + SD) of eggs of Diaphorina citri found on the four plants (A, B, C, D), in the presence (low or high den-
sity) or absence of nymphs on plant A (insect release point) 72 h after adults were released

Treatment

Mean no. of eggs Total
Plant A Plant B Plant C Plant D

Absence of nymphs (Control) 205.7 74.7 42.1 58.2 3807 A
(£ 63.5) Aa (+22.7) Ba (= 13.7) Ba (=31.3)Ba

Low density of nymphs 26.6 49.6 27.4 39.8 1434 B
(+10.3) Ab (= 16.4) Aa (+10.9) Aa (+20.5) Aa

High density of nymphs 8.9 87.0 27.1 93.9 2169 B
(+=3.9) Ab (£ 41.7)Ba (£ 124) Aa (+30.8) Ba

Total 2412 2113 966 1919

Means followed by different letters indicate a significant difference in the number of eggs at significance level a = 5% (likelihood
ratio test). Lowercase letter compares each plant among the treatments (row) and uppercase letter compares the different plants
within each treatment (column). For total marginal, uppercase letter compares treatments, regardless of plant (row)

Fig. 3 Mean percentages of
adult females of Diaphorina
citri on Murraya paniculata
plants in the presence of
non-parasitized or para-
sitized nymphs over 24, 48,
and 72 h

Average proportion (%)

Parasitized Non-parasitized
1004
754 Plant
H-
s
504 c
D
None
254
0-
24 48 72 24 48 72
Time (h)

Table 3 Numbers (mean + standard error) of insects, Diaphorina citri, found on the four plants (A, B, C, D), in the presence of
non-parasitized or parasitized nymphs on plant A, over 3 days

Treatment Period (h) Mean no. of insects
Plant A Plant B Plant C Plant D
Non-parasitized nymphs 24 14.1 +2.7 Aa 6.6 + 1.1 Ab 8.0 + 1.6 Aab 6.9+ 1.0 Ab
48 12.1 +2.2 Aa 6.0+ 1.2 Ab 7.7+ 1.4 Aab 6.6 + 0.7 Ab
72 13.5+2.5 Aa 7.8+ 1.7 Aa 8.6+ 1.8 Aa 80x13Aa
Parasitized nymphs 24 122+ 1.5 Aa 73+ 1.5Ab 3.5+0.7 Ac 4.0+ 0.5 Ac
48 11.7 + 1.5 Aa 7.0+ 1.4 Ab 33+0.7 Ac 44 +0.5 Ac
72 13.1+19 Aa 7.7+ 1.6 Aab 43+ 1.1Ab 6.3+ 1.2Ab

Means followed by different letters indicate a significant difference at significance level o« = 5% (likelihood ratio test). Uppercase let-
ter compares the times inside plants for each treatment (rows), lowercase letter compares the plants at each time for each treatment

(column)
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Table 4 Numbers (mean + SD) of eggs of Diaphorina citri found on the four plants (A, B, C, D), in the presence of non-parasitized

or parasitized nymphs on plant A, 72 h after the release of adults

(A) Treatment Mean (B) Mean n° of eggs
Plant A Plant B Plant C Plant D
Non-parasitized nymphs 499 (*177)a 40.5 41.9 37.6 40.0
Parasitized nymphs 30.0 (£ 6.5)b *11.2) A (x12.4) A (x10.7) A (+6.9)
A
Total 810 839 747 800

Means followed by different letters indicate a significant difference at the significance level a = 5% (likelihood ratio test). Lowercase
letter compares the treatments (row) and uppercase letter compares the different plants (column)

Discussion

In this study, the presence of D. citri nymphs affected
the movement behavior of adults. In the absence of
nymphs, adult females tended to remain at the release
site (plant A). When nymphs (parasitized or non-
parasitized) were present at the release site (plant A),
the adult females tended to disperse to other plants,
reducing aggregation. The presence of nymphs also
altered the females’ oviposition behavior. In the
absence of nymphs, oviposition rates were higher on
the plant with the highest aggregation of adults (plant
A). However, when non-parasitized or parasitized
nymphs were present on plant A, the number of eggs
deposited on plant A was reduced.

Psyllid females showed aggregative behavior at the
release site (plant A) in situations where nymphs were
absent or present in low/medium densities. The ten-
dency to remain at the place of release or arrival in an
orchard was also observed in the field by Arakawa and
Miyamoto (2007) in wind-tunnel experiments, and by

Boina et al. (2009), who used protein markers to observe
the bidirectional movement of insects between managed
and unmanaged areas. These results support the idea that
psyllids have low active mobility, even though they have
a flight capacity of up to 2.4 km (Martini et al. 2014a).
The aggregative behavior observed may also be
due to the attraction of D. citri to volatiles emitted
by plants damaged by feeding of conspecifics present
(Groot et al. 2003; Blackmer et al. 2004). In addition
to the psyllid’s attraction to citrus plants and orange
jasmine (Patt and Sétamou 2010), its attraction to psyl-
lid-damaged plants and its aggregation behavior were
observed by Hijaz (2013) and Patt et al. (2018), who
linked this result to increased release of salicylic acid,
as previously found by Mann et al. (2012) with citrus.
Although the study was carried out with plants infected
with HLB, they observed an increase in methyl salicy-
late emission in plants that attracted more insects. Mar-
tini et al. (2014b), in their study with curry plants, also
observed aggregated behavior of females of D. citri
on damaged plants when fewer than 10 individuals

Fig. 4 A and B Diaphorina citri eggs under psyllid nymphs parasitized by Tamarixia radiata. Parasitism is evidenced by the pres-
ence of meconium and wax, on the back and around the body of the nymph, respectively

@ Springer
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(females) were present. In the absence of damaged
plants, the presence of more than 10 females had a
repellent effect on other females, which were also
not attracted by the presence of males of the species,
although males were attracted by females.

In the absence of nymphs at the release site, the
present results indicate that plants with more psyl-
lids also had more eggs deposited. In this species,
as in others such as Cassida rubiginosa (Coleop-
tera: Chrysomelidae) (Fujiyama et al. 2008) and
Thaumastocoris peregrinus (Hemiptera: Thaumas-
tocoridae) (Martinez and Bianchi 2010; Wilcken
et al. 2010), the feeding and oviposition sites over-
lap, since D. citri adults and nymphs both prefer
young growing shoots (Hall et al. 2013; Cifuentes-
Arenas et al. 2018). This aggregation behavior of
the adult and nymphal stages benefits the species,
since it indicates better local abiotic conditions
for development and reproduction (Sétamou et al.
2016; Cifuentes-Arenas et al. 2018). On the other
hand, this aggregation also entails competition for
space and food, in addition to increasing the risk of
infections and the action of natural enemies (Mar-
tini et al. 2014b), which may explain the change in
the adults’ behavior as the process continued, with
an increase in the density of nymphs on plant A.

Knowing that the presence of conspecifics at a
location indicates quality and the degree of com-
petition, a decrease in numbers of both adult and
immature insects is expected at these locations
(Davis et al. 2011), as was observed here in the
treatments with low and high density of nymphs.
Bawin et al. (2014), Guo et al. (2014), and Kohan-
dani et al. (2015) found similar results and deter-
mined that the presence of conspecifics above a
certain threshold is required to trigger a “displacer”
effect on insects. Although this “displacer” effect
was observed in this study in both experimental
scenarios (presence of non-parasitized nymphs and
presence of parasitized nymphs; Tables 1 and 2),
eggs were still deposited at these “occupied” sites,
even if other plants of the same quality were avail-
able for feeding and oviposition in the same cage.

Studies on the impact of the presence of natural ene-
mies on the reproductive rate of hosts/prey have shown
that D. citri can reduce the number of offspring due
to the presence of a control agent (Holmes and Bethel
1972; Price 1980; Nelson et al. 2004; Ninkovic et al.
2013; Hermann and Thaler 2014). In this study the

@ Springer

number of eggs in a presence of parasitized nymphs
was lower than the number observed in cages with non-
parasitized nymphs, although the analysis did not detect
the effect of parasitism on number of laid eggs (p-value
was marginally non-significant). However, in the pres-
ence of parasitized nymphs, D. citri laid eggs in the
presence of the parasitoid, although the parasitoid was
still developing within the psyllid nymphs (Fauvergue
and Quilici 1991; Hoy and Nguyen 2000). Diaphorina
citri also showed this behavior in another study (Seo
et al. 2018), where it perceived and was repelled by the
chemical traces of a natural enemy, the predator H. con-
vergens, reducing its oviposition rate and excretions.

Detection of the presence of natural enemies has
important consequences for the survival rate of an
insect and can manifest at the level of predator/prey
and host/parasitoid interactions as well as in intragu-
ild competition (predator/parasitoid) interactions. For
example, Milosavljevi¢ et al. (2021) found that the
presence of Linepithema humile(Hymenoptera: For-
micidae) strongly reduced the control of D. citri by T.
radiata, since the ants defended the psyllids from the
parasitoids in exchange for food. Thus, the develop-
ment of behaviors by insects that minimize their risks
in the presence of conspecifics and natural enemies is
necessary from a biological point of view. For exam-
ple, T. radiata marks the nymphs of D. citri with a
pheromone after parasitizing them, to prevent super-
parasistism (Mann et al. 2010) and can detect vola-
tiles to avoid predating of their nymphs (Milosavljevié
et al. 2021).

The results obtained here reinforce the recommen-
dation that D. citri control tactics should be focused
on the nymphal stages, since in addition to contribut-
ing more effectively to the spread of HLB (Inoue et al.
2009, Diniz et al. 2021), the presence of nymphs can
stimulate adults to disperse, also contributing to the
spread of the disease.

Conclusion

The results showed that D. citri has an aggregated
behavior, with a tendency to low mobility in the
absence of nymphs. However, this behavior changes
Explain? when nymphs are present, in low or high
densities and whether or not the nymphs are para-
sitized. D. citri distinguishes unparasitized nymphs
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from nymphs parasitized by T. radiata, and in this
case, lays eggs close to the parasitized nymphs.
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